WSEAS TRANSACTIONS on SYSTEMS and CONTROL

Wanjun Liu, Yali Dong, Shikai Zuo

Design of observer for one-sided Lipschitz nonlinear
systems with interval time-varying delay

WANJUN LIU, YALI DONG, SHIKAI ZUO
School of Science
Tianjin Polytechnic University
Tianjin 300387
CHINA
dongyl@vip.sina.com

Abstract: - This paper deals with state observer design problem for a class of nonlinear dynamical systems with
interval time-varying delay that satisfies the one-sided Lipschitz condition. The systems under consideration
include the well-studied Lipschitz system as a special case and possess inherent advantages with respect to
conservativeness. By constructing a novel Lyapunov-Krasovskii functional and utilizing free-weighting
matrices approach, novel sufficient conditions that guarantee the observer error converge asymptotically to zero
are obtained for a class of nonlinear dynamical systems with interval time-varying delay in terms of linear
matrix inequalities. The computing method for observer gain matrix is given. Finally, illustrative examples are
given to demonstrate the effectiveness of the proposed method.
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1 Introduction

Over the last decades, a large amount of research
activities have focused on observer design for
nonlinear dynamical systems as can be shown
through the vast literature in this field. This topic
was inspired by the fact that state estimation can be
used for control, diagnosis and supervision
purposes. Recently, other applications, such as
synchronization  and  input  recovery in
communication systems, have become ones of the
emerging and interesting research areas [1-4].

It is well known that the existence of time delay
in a system may cause instability or bad system
performance in closed feedback systems. The time-
delay phenomenon may be encountered in many
practical systems, such as the AIDS epidemic,
aircraft stabilization, chemical engineering systems,
inferred grinding model, manual control, neural
network, nuclear reactor, population dynamic
model, rolling mill, ship stabilization, and systems
with lossless transmission lines. Hence, recent years
have witnessed investigation of stability analysis
and observer design for time-delay systems [4-7].

The conventional Lipschitz condition is
commonly used in the existing nonlinear observer
design. However, a major limitation in the existing
results for Lipschitz nonlinear systems is that most
of them work only for adequately small values of
the Lipschitz constant [8]. In order to overcome this
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limitation, the so-called one-sided Lipschitz
condition was first introduced in [9] for nonlinear
state estimation. Several interesting works on state
observers and stabilization for this type of systems
were developed in [10-13]. In [12], the problem of
observer design for one-sided Lipschitz non-linear
systems was investigated by using the linear matrix
inequality (LMI) approach. Sufficient conditions
that ensure the existence of observers for one-sided
Lipschitz non-linear systems were established and
expressed in terms of linear matrix inequalities
(LMIs). State observer design for a general class of
nonlinear discrete-time systems that satisfies the
one-sided Lipschitz condition was considered in
[13]. The problem of observer-based stabilization
for linear systems with parameter inequality was
considered in [14]. A design methodology was
proposed ascribed to a judicious use of the famous
Young relation.

Some new delay dependent sufficient conditions
ensuring the stability for uncertain neutral system
with discrete and distributed delays were obtained in
terms of linear matrix inequalities (LMIs) in [15].
Usually, the range of delays considered in most of
the existing references is from zero to an upper
bound [15]. In practice, however, the delay may
vary in a range for which the lower bound is not
restricted to being zero [16]. However, to the best of
our knowledge, few results have been given on the

Volume 10, 2015



WSEAS TRANSACTIONS on SYSTEMS and CONTROL

study of observers for one-sided Lipschitz nonlinear
systems with interval time-varying delay and some
special nonlinearities. This motivates our present
research.

In this paper, we consider the nonlinear observer
design for one-sided Lipschitz systems with interval
time-varying delay and nonlinearities. By using
Lyapunov-Krasovskii functional and free-weighting
matrices approach, we establish novel sufficient
conditions for a class of nonlinear dynamical
systems with interval time-varying delay in terms of
linear matrix inequalities, which guarantee the
observer error converges asymptotically to zero.
The computing method for observer gain matrix is
proposed.

This paper is organized as follows. In Section 2,
the system description, some assumptions and
lemmas are given, and the corresponding observer is
introduced. In Section 3, some sufficient conditions
that guarantee the observer error converges
asymptotically to zero for a class of nonlinear
dynamical systems with interval time-varying delay
are presented. In Section 4, simulation examples are
given to show the performances of our method.
Finally, conclusion is drawn and remarks are made
in Section 5.

Notations. R" denotes the n-dimensional real
Euclidean space. R™" represents the set of all

mxn real matrices. (-,-) is the inner product in R",
that is given x,yeR", then (x,y)=x"y, where x" is
the transpose of x. ||-| denotes the Euclidean norm
in R". For a square matrix S, S>0(S <0) means
that the matrix is positive definite (negative
definite). In symmetric block matrices, we use an

‘%’ to represent a term induced by

asterisk “ =
symmetry. | represents an identity matrix of

appropriate dimension.

2 Problem

preliminaries
Consider the following uncertain nonlinear systems
with interval time-varying delay

X(t) = Ax(t) + Bx(t — h(t)) + @ (x(t),u)

+ £ (x(t), x(t=h(t)),u),

y(t) = Cx(t) + Dx(t —h(t)),
where xeR" is the state vector, ueR"™ is the
control input, yeR" is the measured output,

statement and

1)

A BeR™ and C,DeR™" are known matrices,
the continuous functions f (x(t), x(t—h(t)),u) and
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®(x(t),u) are unknown and denote the nonlinear
terms with respect to x and u. The delay h(t) is
time varying and satisfies

0<h <h()<h,, h@)<h <1, Vt>0, (2
where h, and h, are constants representing

respectively the lower and upper bounds of the
delay, h, is a constant.

Our objective is to derive sufficient conditions
that ensure the stability of observer error dynamics.
The following assumptions are made throughout this

paper.
Assumption 1 ®(x(t),u) and f(x(t), x(t —h(t)),u)

are one-sided Lipschitz with respect to x and u, i.e.
(@(x(t),u) — D(KTE), u), X(1) - X(V)) < o [x ()~ x(O)[,
©)
(F(x(t), x(t—h(®),u) - f(XT), x(t - h(t)),u),
x(®) - K1) < o, [x() ~ ()|

+ s [x(t=h(®) - Xt~ ),
forany x,XxeR", yeR", ueR", where p,, p,,
P, are the one-sided Lipschitz constants which can
be positive or negative.
Assumption 2 ®(x(t),u) and f(x(t), x(t —h(t)),u)
are quadratic inner-boundedness with respect to x
and u, i.e.

(@(X(), u) - DKL), )" (D(x(t), u) — DX(L),u))
< 7,(x (1) = K{0), DX(L), u) - D(x(1), u))
+ A x® - %)
(F (x(0), x(t—h(t)),u) - f (KT), x(t ~h(t), u))"
x(f(x(t), x(t—h(t)),u) — f (KT0), x(t (1)), u))
< B, |x@) = KW0)|° + Bs|x(t —h() - x(t - h@)|*
+7,(X(t) = (1), f (x(t), x(t - h(t)),u)
— £ (X0), x(t - h(t)),u))
+7,(x(t = (1)) - Kt~ h(t)),
f(x(t), x(t — h(B)),u) — f (X0, x(t — h(t)), u)),
(6)

(4)

(%)

where S, f,,05,,7,,7, and y, are real scalars.

Lemma 1 [17] For any constant matrix M € R™",
M=M'">0, scalar vector  function

@:[0,7] > R" such that the integrations concerned
are well defined, then

[ j':a)(s)dsT M [ jo”w(s)ds}

<[ " (s)Mw(s)ds.

n >0,

(7)
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Lemma 2 (Schur Complement [18]). Given
constant matrices X,, X, and X, with appropriate

dimensions, where ] =%, and £} =%, then
T, +2I%'E. <0
if and only if

> X! Y )
o l<0oor| P [<0. (8)
23 _22 23 Zl

Remark 1 Unlike the well-known Lipschitz
condition, the constants p,, 0,, ps, L1 Bor Bas
71, V. ¥, Can be positive, negative or zero. In
addition, if the functions ®(x(t),u) and
f(x(t), x(t —h(t)),u) are Lipschitz, then they are
also both one-sided Lipschitz and quadratically
inner-bounded, but the converse is not true. The
one-sided Lipschitz condition provides a less
conservative condition than the classical Lipschitz
one. The concept of quadratic inner-boundedness is
very useful to provide tractable LMI stability
conditions.
The observer of system (1) is defined by the
following form
K(0) = AX(t) + Bx(t — h(t)) + @(x(t), u)
+ f(X{t), x(t = h(t)),u)
+ L(y — CX{t) — Dx(t — h(t))),

(9)
denote e(t) = x(t) - X(t) then the observer error
dynamics is governed by

é(t) = (A—LC)e(t) + (B—LD)e(t —h(t))
. (10)
+O+ f,
where
® = O(x(t), u) - D(R(L), u),
and

f 2 f(x(t), Xt —h(),u) - f (KTt), x(t — (D), u).

3 Main Results

In this section, we present LMI conditions for the
observer synthesis problems of one-sided Lipschitz
nonlinear systems with interval time-varying delay.

Theorem 1 Assume that assumption 1 and 2 are
satisfied. For given scalars 0<h, <h,, h, and
observer gain matrix L, the observer error dynamics
(10) is asymptotically stable, if there exist scalars
& 2>0(=1234) and matrices P>0, X >0,

Q>0 (i=12..,7), N"=[N] N NJ NJ]
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MT=[M] M M]

appropriate dimensions

LMIs hold:
1_Il
%
X M
T >0,
M Q,
where
¢p+h X +h,Y
H _ *

where

*

*

3
Jh87Q,
0

%

* * —Q4
e [P rn |
v ffvo

M; ], Y>0 of
such that the following
IT

2}0, (11)
HB

Y N
[NT szo, (12)

-M -N h,S7Q,
-Q 0 0
% _Q3 0

0 0
0 0
0 0
0 0
Qs 0 |,
0 -Q
B-LD I 1],
¢13 ¢14 ]
€473
2w
—&,l 0
* —&,l |

¢, =A"P+PA-CTL'P-PLC +Q,
+Q,+Q+ M, +M] + N, +N/
+ (e + 8,0, + 80, +E,5,)1,

¢12:PB—PLD+M2T+N2T,

bo=P+M]+N] + 8075

2

¢14=P+M}+NI+L2_‘92|,

Pp =—(1—hy)Q, + (.05 +&,85).

Proof. Let us choose the Lyapunov-Krasovskii
functional candidate as follows:

\Y (t) :Vl(t) +V2 (t) +V3 (t)'
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Vi (t)=e" (t)Pe(t),
V()= j:,hm e’ (s)Q.e(s)ds + Jihm e" (s)Q,e(s)ds
+]l L e S)Q.e()s,
V() = I_Ohm IfwéT (5)Q,é(s)dsd®
[0 [ €T 6)Que(s)dsdo
[0 0] € 6)Que()dsd1de

[ L1 € ©)Que(s)dsd 2do,
then
Vi(t) =e" (t)[ (A-LC)"P + P(A- LC) Je(t)
+2e" (t)P(B — LD)e(t — h(t))
+2eT (t)PD + 2¢" (t)Pf,
V,(t) = e (t)Q.e(t) —e" (t—h,)Q.e(t —h,)
+e' (1)Q,e(t) + e’ (1)Qqe(t)
—(@-h(t)e" t-h(t)Qet—h(t)  (14)
—e' (t—h,)Qse(t-hy)
<e'(t)[Q, +Q, +Q;]e(t)
—e'(t-h,)Qe(t~h,)
—(L-hy)e’ (t—h(®))Q,e(t —h(t))
—e’(t—hy)Q.e(t—hy),
Vy(t) =h, &7 ()Q.E(t) +hye" ()Q:E(t)
- f_hm 67 (5)Q,6(s)ds — j:_hM 67 (5)Q.6(s)ds

+h—2"2*eT (1)Q.E(t) - j°h Lt ()00

" %éT QM- [, ¢ (6)Qe(s)dsdo.
(15)
Define & (©)=[e'(®) ¢"(t-h) &* ']

Then, the following equations hold for any matrices
M and N with appropriate dimensions:

257 (H)M [e(t) —e(t-h,) -, é(s)ds} _0,
" (16)
25T (N [e(t) —et-n,) [ é(s)ds} _0.

Moreover, for matrices X and Y with
appropriate dimensions, we have

&l OXEWD - & OXEDds=0,

t (17)
huél (Y1) - L_hM & MY & (t)ds=0.
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On the other hand, for any scalars

g, 20(i=12,34), if follows from (3)-(6) that
& pe’ (e —e" ()® >0,
&, [pzeT (te(t) + p,e" (t—h(t))e(t —h(t))
—e'm)f >0,
e, BT Det) + " D - DD 20,
g, Be" (De(t)+ BeT (t—h(t)e(t-h(t))
+7,8T O T+ 7" t-h) f - F7f]=0.

From (14)-(15), we have
V(1) =V, (1) +V, (1) +V, (1)

<e' ()| (A-LC)"P+P(A-LC) Je(t)
+2e" (t)P(B—-LD)e(t—h(t)) + 2e" (t)PD
+2e" ()Pf +e" (1)[Q, +Q, +Q,]e(t)

—-e'(t—h_)Qe(t—h )-e'(t—h,)Q.e(t-h,)

—(1-hy)eT (t—h(t))Q,e(t—h(t))
+h, &7 (t)Q,E(t) +h, e (t)Q.E(t)

+%éT(t)Q6e(t)+§eTm@éﬁ)

_ f_hm €7 (s)Q,é(s)ds — f_hM 67 (5)Q,6(s)ds
[ [, ©)Que(s)dsdo

=[0I, ©0Que(e)dsdo.

(20)

From (16)-(20), it follows that
V(t)<e' (t)[ (A-LC)"P+P(A-LC) Je(t)
+2e" (t)P(B-LD)e(t —h(t)) + 2e" (t)PD
+2e" )Pf +e" (1)[Q, +Q, +Q,]e(t)
—e' (t-h,)Qe(t-h,)
—(@-hy)e" (t-h(t))Q.e(t—h(t))
—e' (t—h,)Qse(t—hy)
+h 7 (t)Q,e(t) +h,&" (1)Q.E(t)
h® ; o hZoo .
+7“‘e (t)Qee(t)+7e (t)Q,e(t)
~[. €T ()Q.e(s)ds - j;hM 67 (5)Q.6(s)ds

—I,Oh I;géT (s)Q.&(5)dsd
‘I_Oh I;Oe'T(S)Qﬁ(s)dsda
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287 (M [e(t) —e(t-h,) -], é(s)ds}
28T (N [e(t) —et-h) -, é(s)ds}
&l OXEO -, & OXE DS
+h, & OYED -, & OYEDS
+&,[ pe” (t)e(t) —e" (1)@ |

+&,] pe” (Det)—e" () f

+pe” (t=h(n)e(t—h(v)]

&5 BeT (Det) + 7. (D -DTD |

+e,[B.e" (De(t) + By (t—h()e(t - h(t)

+r,e’ O F +ye"t-h@)f-f7f].
(21)

From (21), we get
V(t)<e' (t)[ (A-LC)"P+P(A-LC)

+Q, +Q, +Q, Je(t) + 2¢" (t)Pd
+2e" (t)P(B—LD)e(t —h(t))
+2e" (t)Pf —e" (t—h_)Qe(t—h_)
—e' (t-hy)Q.e(t—hy)
—(1-hy)e" (t—h(t))Q.e(t —h(t))
+h_é"(1)Q,&(t)+h,,e" (1)Q.E(t)

+ %éT ()Qee(t) + %éT ()Q-£(t)

[ €T(O)QuE()ds— [ €T (5)Qu(s)ds

t-h,,

L 2£T (M [e(t) —e(t-h,) -, é(s)ds}
2T (N [e(t) —et-h) -, é(s)ds}
+h & OXEO-[ & OXEMs
& OVEO =[], & OYE s

+& ] pe’ (De(t)—e" ) ]

+&,] poe’ (Det)—e" ) f

+pe” (t—h(t))e(t—h(t)) ]

+&5| B Me) +y,e" (P -0 |

+e,[ B2 (et)+ B’ (t—h(b)e(t—h(t))
17T (O F +re" t-h@) - 7]
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=& ®[0+h,57Q,S+h,

S'Q.S

h M
2 S QGS+_S Q7 j|§3(t)
- (t,s){M :
[ g
thy 2 \b NT

ngz (t,s)ds

N}g(ts)ds
Q|7

(22)
where

EMm=[&® e't-h,) e't-h,)]
&s)=[& M €6

S=[s 0 0],
$+h X+h,Y -M -N
0= s -Q, 0 |
* % _Q3

From (11), (12) and Lemma 2, we get that
V (t) <0 for all e(t) #0. This completes the proof.
Remark 2 Theorem 1 provides the interval time-
varying delay dependent stability criteria for given
gain matrix L, which can be illustrated by Example
1 in the next section. However, our design goal is to
find an observer gain matrix L such that the error
dynamics (10) is asymptotically stable. We can
derive the following theorem.
Theorem 2 Assume that assumption 1 and 2 are
satisfied. For given scalars h >0, h, >0 and h,,
the observer error dynamics (10) is asymptotically
stable, if there exist scalarse; >0 (i=1,2,3,4) and

matrices P >0, Q,>0(i=12,---,5) of appropriate
dimensions such that the following LMI holds:

Q0
= ~ | <0, (23)
0 Q
where
Q, Qp Qp Q,,
(Ve
S_): * sz O %I ’
* * =gl 0
| * * * —g4| |
Qll=ATF’—i—F’A—RTC—CTR—i—Q1
+Q,+Q,;+h,Q, +h,Q,
+ (&0, + 8,0, + &5 +E,8,)N,

EYL— €
Q,=PB-R'D, Q, =P+ 1]
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QM:MLZ—SZ.,
Q,, =—(1-hy)Q, +(&,05 +&,8:),
—Q, O 0 0
0 -Q, 0 0
Q=0 0 —iQA 0
hm
1
0 0 0 =
hMQ5

If (23) holds a feasible solution, then the gain
matrix L isgivenby L=P'R".
Proof. Choose the Lyapunov-Krasovskii functional
candidate as follows:

\Y (t) =V1(t) +V2 (t) +V3 (t)!
where
V,(t) =€’ (t)Pe(t),

V.=, e'(6)QeE)ds+ [ e (5)Q.e(s)ds
+ .[;h e’ (s)Q.e(s)ds,
V,(t) = j°h [ e"(5)Q.e(s)dsdo

+ [ eT(5)Qee(s)dsdo,
We have '

V(1) =e" (1)[ (A-LC)"P+P(A-LC)e(t)
+2e" (t)P(B—LD)e(t —h(t))
+2eT (t)PD +2e7 (t)Pf,

V,(t)=e' (t)Q.e(t) —e" (t—h,)Q.e(t-h,)
+e" (1)Q,e(t) +e ()Qqe(t)
—(1-h(t)e" (t—h(1))Q,e(t - h(t))
—e' (t—h,)Q.e(t—hy)

<e' (t)[Q, +Q, +Qs]e(t)
—e' (t—h,)Qe(t-h,)
—(—hy)e" (t—h(t))Q,e(t—h(t))
—e' (t—hy)Q.e(t—hy),

Vy(t) =h,e" ()Q.e(t) + hye™ ()Qse(t)

— J‘tt—h e’ (s)Q,e(s)ds — .[;hM e’ (s)Q.e(s)ds.
By Lemmaml, we have

—J':_h e’ (s)Q,e(s)ds

< —é“{t_hm e(s)ds}T Q, U:_hm e(s)ds} :

and
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_J.:,hm e’ (s)Q.e(s)ds
< —%[J‘:% e(s)ds}T Qs [J-tihM e(s)ds},
then

Vi) <he’ (t)Q.e(t) +hye’ ()Qee(t)
_é[fhm e(s)ds}T Q, U;hm e(s)ds}

_%U:m e(s)ds}T Qs [ JthM e(s)ds}.

Adding the terms on the left sides of (18)-(19) to
the time derivative of V (t), yields

V(t)<e' (t)[ (A-LC)"P+P(A-LC)]e(t)
+2e" (t)P(B—LD)e(t - h(t))

+2e7 (t)PD +2e7 (t)Pf

+e' ()[Q,+Q, +Q;]e(t)
—e'(t-h,)Qe(t-h,)

—(@-hy)e" (t—h(t))Q.e(t —h(t))

—e' (t—h,,)Qse(t—hy)

+h,e’ (1)Q.e(t) +hye’ (t)Qse(t)

Il e @[ e

_%U:m e(s)ds} Qs U{ihM e(s)ds}

+&] pe’ (et)—e" O |

+e, [ 0,e" (De(t) + pe’ (t—h(t))e(t - h(t))
(M) T |+&,[ Be” (e +7e" (D~ ]
+é, [ B.eT (e(t) + B’ (t—h(t))e(t—h(t))
7T O F +ye (t-h@)f - f7F ]

=T (O,

(24)
where
ST =[e") e'(t-h) o T e'(t-h,)

e't-h,) [ e@ds [ eT(s)ds]

Let L=P'R". Then it follows from (24) that
V (t) <0 for all e(t) =0 provided that the LMI (23)

holds a feasible solution. The proof is completed.
Remark 3 In some existing literature, the range of
varying delay considered in many existing
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references is from zero to an upper bound. When

h,, =0, i.e., the time-varying delay satisfies
0<h()<h,, h)<h,,

we can obtain the following result.

Corollary 1 Assume that assumption 1 and 2 are
satisfied. Consider system (1) withh  =0. For given

scalars h,, >0, h, and observer gain matrix L, the
observer error dynamics (10) is asymptotically
stable, if there exist scalars &, >0 (i=1,2,3,4) and
matrices  P>0, N'=[N/ Nj N; N],
Y >0, Q,>0(i=1234) of appropriate
dimensions such that the following LMIs hold:

2
g+h,Y -N /h.STQ, 4/h7’"STQ4

* -Q, 0 0 <0,
* * _Q3 0
i * * * _Q4 |
Y N
>0,
N" Q,
(25)
where
¢1l ¢12 ¢13 ¢14
E4Y
p=| = P2 O
ok —g 0
* % % _54|
S=[A-LC B-LD 1 1],

¢y = ATP+PA-C'L'P-PLC
+Q,+Q, + N, +N/
+ (8,01 + .0, + &3P+ €,8,)N,

¢, =PB—-PLD+N],

$o=P+N] +—‘93712_‘91 l,

¢14=P+N}+%|,

¢y =—(1— hd )Q, + (52/73 + ‘94183)|'
Proof. Let us choose the Lyapunov-Krasovskii
functional candidate as follows:
V(1) =V, (t) +V, (1) +V, (1),
where
V() =e’ (t)Pe(t),

Vo=, ¢ Qe+ [ e (5)Qe(s)ds,
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V, () = f°h j:we'T (5)Q.6(s)dsd @

+ Joh J: fﬂ &' (s)Q,é(s)dsd Ad 6.

Using the similar method shown in the proof of
Theorem 1, the inequality (25) can be obtained and
the detailed proof is omitted.

Corollary 2 Assume that assumption 1 and 2 are
satisfied. Consider system (1) with h =0. For

given scalars h,, >0, and h,, the observer error
dynamics (10) is asymptotically stable, if there exist
scalars &, >0 (i=1,2,3,4) and matrices P >0,
O, >0 (i=12,3) of appropriate dimensions such
that the following LMI holds:

Qu le le Qm 0 0
« 0, 0 25 9 0
2
* * =gl 0 0 0
* * * —&,l 0 0 <
* * * * _O2 0
* * % * * —i03
hM
(26)
where

Q,,=A"P+PA-R'C-C'R+0,+0,
+hyO; + (6,0, + 6,0, + €3+ €,5,)1,

E3V1 81
)

Q,=PB-R'D, Q=P+

Q, =p+8l2"%

14 =

Qy =—(1-hy)O0; +(£,05 +,8:)1.

If (26) holds a feasible solution, then the gain
matrix L is givenby L=P'R".
Proof. Similar to the proof of Theorem 2, the
condition (26) in Corollary 2 can be obtained and
the detailed proof is omitted.
Remark 4  When f(x(t),x(t—h(t)),u)=0 and
®(x,u) =0, the system (1) can be written as

{)‘((t) = AX(t) + Bx(t — h(t)), 27)
y(t) = Cx(t) + Dx(t — h(t)).

The observer of system (27) is defined by the
following form

KTt) = AX(t) + Bx(t - h(t)) 28)
+ L(y — CX{t) — Dx(t — h(t))).

Denote e(t) = x(t) - X(t), then the observer error

dynamics is governed by

é(t) = (A— LC)e(t) + (B—LD)e(t—h(t)).  (29)
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For system (29),
corollary.
Corollary 3 Assume that assumption 1 and 2 are
satisfied. For given scalars 0<h_ <h,,, and h,, the
observer error dynamics (29) is asymptotically
stable, if there exist matrices P>0, and
Q,>0(i=12,...,5) of appropriate dimensions such
that the following LMI holds:

we have the following

X, 2, O 0 0 0
* X, 0 0 0 0
* o« —Q 0 0 0
= Q% 10 0 <0,
* * * * _EQ‘l 0

1
% * * * % JR—
L hy, Qs_
(30)
where

$,=A"P+PA-R'C-C'R+Q,
+Q, +Q; +h,Q, +hyQs,
¥,=PB-R'D, Z,=-(1-h,)Q,.
If (30) holds a feasible solution, then the gain
matrix L is givenby L=P'R".
Proof. Similar to the proof of Theorem 2, the

condition (29) in Corollary 3 can be obtained and
the detailed proof is omitted.

4 Ilustrative examples

In this section, we present two numerical examples
in order to show the superiority of our design
method.

Example 1. Consider the uncertain nonlinear
systems (1) with the following parameters:

S P L

c=[0 2], D=[1 1],
D(x(t = 0 0 t
(x(®.v) _[—0.333sin(x1)}+[21.6}u( )

f = _Xl(X12+X22) '
—X, (% +X7)

1=0.333, h,=0.1 h,=12 h,=0.9,
7, =0.1, v,=0.9, y,=07, p =07,
p,=05p,=02, B,=08 p,=14,
B, =16.
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Take L =(-2 4)T . Theorem 1 can be applied to

design an observer, and solving the LMIs (11) and
(12) yields
_[57.95 6101 [484.10  86.20
|61.01 14483 ' | 86.20 1096.40|

(20380 76.40 145.04 34.04
Q=] 76.40 1420.10] 3{34.04 905.75}’
[964.51 —7.12 8.05 0.90
=l 712 918.64}' Qs:[o.go 1.84}’
(899.10 0 7.79 0.84
%= o 899.10] Q7{0.84 1.98}'

R=[-81.70 1544.60],

[-411.19 78.76 |
78.76  197.96
1437  28.93
M - 28.93 -55.24
-239 754 |
754 5517
-11.40 -6.35
| -6.35 -62.36]
[-46.81 -2.81]
-281 -0.34
12.48 0.83
N 0.83 —0.09
762 746/
-7.46 -5.06
-12.97 -7.49
| -7.49 -5.41|
x{xl Xz}, Y{Yl Yz}
* X3 * Y3
& =&, =& =¢&,=0899.10,
where
997.97 -10.00 -1.66 -2.55
-10.00 923.82 -2.55 -4.58
17| _166 -255 899.44 -058 |
255 458 -0.58 900.36
-0.04 -73 251 -1.23
« -73 -671 -123 -752
? 1-017 -0.34 -040 -0.62]
034 176 -0.62 222
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898.90 0.15 -0.10 0.00 | ,
| 015 90035 0.00 1.39 Y
| -010 000 89892 -012] gl -
000 139 -0.12 900.61| 1%
1062.40 9.80 -43.46 -2.82] ,
| 980 899.80 -2.82 -0.17
‘| 4346 -2.82 91048 073 | g
-2.82 017 0.73 899.06 ol
[21.66 1226 4055 12.77
12.26 154 12.77 1.56 0 08 1 15 2 25 3 35 4 45 &
Y — ' . ' ' , tirme in (sec)
? |-592 -315 -10.96 -3.34 Fig. 2. Responses of state x, (k) and the estimate of
|-3.15 -0.13 -3.34 -0.15 X, (k) in Example 1
[916.86 12.74 19.74 14.27 Example 2 Consider the time-varying delay system
1274 90867 1427 10.03 (27) with the following parameters
Y, = -09 0.2 -1.1 -0.2
19.74 1427 92298 15.76 A= , B= ,
0.1 -0.9 -0.1 -11
| 1427 10.03 1576 909.61
According to Theorem 1, the estimation error _ CZ[_O'Z _0'1]’ D=0.
(10) converges asymptotically towards zero. For given
Let the input u(t) =sin(t). For simulation, we set h, =0.1, hy =3, hy =0.9, p,=0.7,
initial conditions as follows: p,=05  p,=02, B =08 pB,=14
x(0)=(-2 -2 -15 -2)7, p,=16, y,=01 y,=09, 7,=03,

X(0)=@05 1 1 -1". solving the LMIs (30) yields
Figs. 1 and 2 show the simulation results for states 59.8841 18.0632
x (k) and x,(k), respectively. From the simulation, :[18.0632 5.6596]
we know that the effect of state trajectory tracking is [

satisfactory. =

55.5489 27.3897
27.3897 14.4644 |

12 :ﬁ'mamfx1_ QZ:‘509.5623 236.0600}
' | 236.0600 110.0697
05 (555489 27.3897
° Q= 273807 14.4644]
o [11.0080 3.1534
15 Q= 31534 6.2778]
2 - (828122 41.2942
8l | = 412002 20.8709}’

1 1 | 1 1
0 2 4 B g 10 12
time in (sec)

Fig. 1. Responses of state x, (k) and the estimate of
X, (k) in Example 1

R:[—2273.2 —1110.5],
then the gain matrix is given by
L —p-RT = -692.0397
- - {—2012.5011}'
For simulation, we set initial conditions as
follows:
x(0)=(-2 -2 -15 -2)7,

X(0)=(05 11 -1".
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Figs. 3 and 4 show the simulation results for states
x, (k) and x,(k), respectively. From the simulation,

we know that the effect of state trajectory tracking is
satisfactory.

0s

X,

4
estimate of x,

- . . L . L . .
0 0a 1 15 2 258 3 348 4
tirne in (sec)

Fig. 3. Responses of state x, (k) and the estimate of
X, (k) in Example 2

X

2
a5 ;: ........ estimate of i

as I I I L I I L . I
0 05 1 1.5 2 25 3 34 4 4.5 5
tirne in (sec)

Fig. 4. Responses of state x, (k) and the estimate of
X,(K) in Example 2

5 Conclusion

In this paper, for a general class of continuous-time
nonlinear dynamical system that satisfies the one-
sided Lipschitz condition with interval time-varying
delay, we propose new observer design approach.
Some novel sufficient conditions ensuring the
existence of state observer are established for the
class of nonlinear dynamical systems with interval
time-varying delay in terms of linear matrix
inequalities. The computing method for observer
gain matrix is presented. Some simulation examples
are given to show the efficiency of the proposed
approach.
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